BIOMIMETISMO Y CONTROL EN EXOESQUELETOS PARA NEUROREHABILITATION

JOSÉ L. PONS

CURSO RESISTE 2016

Wearable

JOSÉ L. PONS

WILEY

Robots

pHRi

BIOMECHATRONIC EXOSKELETONS

Outlook

Introduction

Motivation, constraints & interactions: hybrid systems The concept of associative (or causal) rehabilitation Clinical & Neurophysiological assessment

Introduction :: Motivation

- Neurological conditions leading to severe motor disorders:
 - CVA, 5.5 % of population, 770,000 new strokes annually in US
 - * SCI, 800 per million
 - * Cerebral Palsy, 2.8 per million
 - * Tremor, up to 15% of people 50+

- Stroke, SCI, CP...
- Stroke is a global social and health problem.
- Conventional therapy is in most cases insufficient to restore arm's functional capabilities (Langhorne et al. 2011).
- Novel therapies are needed to improve rehabilitation outcomes.

 High-intensity repetitive task-specific practice might be the most effective principle when trying to promote motor recovery after stroke (Kwakkel et al. 2008)

Introduction :: Rehabilitation vs. motor substitution

Introduction

There is a strong evidence that the use of functional electrical stimulation (FES) improve the reaching and grasping function after stroke (Thrasher et al. 2009; Popovic et al. 2005).

varying)

Exoskeletons :: Two incompatible mechanical systems

Kinematics

Dynamics

Motor Planning Motor Coordination Motor Execution

Introduction :: Complex sensorimotor interactions

VRC CVJVL

INSTITUTO

Kinematics

Dynamics

Motor Planning Motor Coordination Motor Execution

Pons (ed.), John Wiley, 2015

Introduction :: Complex sensorimotor interactions

Kinematics Dynamics Motor Planning Motor Coordination Motor Execution

Pons (ed.), John Wiley, 2015

Introduction :: Current SotA assistive WRs

Dynamics Motor Planning Motor Coordination Motor Execution

Kinematics

Introduction :: WR with healthy volunteers

Kinematics

Dynamics

Motor Planning Motor Coordination Motor Execution

Dynamics Motor Planning Motor Coordination

Motor Execution

Kinematics

Dynamics

Motor Planning Motor Coordination Motor Execution

Pons (ed.), John Wiley, 2015

Cullell et al., Mech. Mach. Theory, 2009

Pons (ed.), John Wiley, 2015

Kinematics

Dynamics

Motor Planning Motor Coordination Motor Execution

Take Home Message

- Two parallel mechanical multibody structures (human anatomic and WR structures) will ingeneral result in incompatible kinematics.
- 2. Kinematic incompatibility will restrict natural human kinematics and result in (inadmissible) interaction forces.
- Either biologically inspired joints or redundant joints would reduce kinematic mismatch and improve acceptability.

4.

5.

The WR will alter dynamic parameters (added inertia, mass distribution) which will affect the passive dynamics and the efficiency of walking.

Current actuator technologies exhibit very dissimilar actuation properties when compared to human muscles (backdrivability, limited torque, reduced compliance...) which limit walking dynamics.

Kinematics

Dynamics

Motor Planning Motor Coordination Motor Execution

Rehabilitation Platform System Integration

- Assistive Devices (Assistance)
 - FES: movement assistance
 - Exoskeleton: arm weight compensation
- High Level Controller (Adaptability)
 - Real-time architecture for controlling the task execution
- Configuration Interface & Visual Feedback (Accessibility and Engagement)
- EEG-based BMI (Association)

Kinematics

Dynamics

Motor Planning

Coordination

Motor

Execution

Feedback: Compensates for disturbances.

Feedforward: Learn the inverse dynamic of the musculoskeletal system by receiving as input the desired kinematic profile and using the output of the feedback loop as the correction parameter [Kawato 1989].

Implementation FEL controller

Feedback:

- PID, with anti-wind up.
- Positive output values generated muscle motor unit _ activations
- Negative output values were ineffective and could lead to windup the integral term, but they were required for the NN to learn.

Feedforward:

- Three-layer neural network (9 input, 9 hidden nodes, and 1 output node)
- The input and hidden layers had an additional bias node (value -1).
- Input was normalized in the range of 1 to 1 to generate faster learning rates.
- The NN was trained using the gradient descent algorithm after each sample time.
- The NN weights were initialized with small random values close to zero.

Kinematics

Dynamics

Motor Planning

Rehabilitation Platform **Example**

Stroke Patients without EEG-informed interface

Stroke Patients with EEG-informed interface

Kinematics

Dynamics

Motor Planning

Results (II) Stroke Subject

A. Root Mean Square error (RMS)

- Movements were divided in runs (1 run = 8 mov).
- The RMS error for each run was calculated for each joint (shoulder -Ø2- & elbow -Ø5-).
- A best fitting linear regression was calculated (black line) to find the trend of the error.
- In both joint for day 1 (blue) and day 2 (red) there is a decreasing trend (negative slope).

Tracking accuracy is improved as the movement is repeated.

The FEL controller is able to learn the inverse dynamic of stroke patients.

Outlook

Introduction

Motivation, constraints & interactions: hybrid systems The concept of associative (or causal) rehabilitation Clinical & Neurophysiological assessment

Kinematics Dynamics Motor Planning Motor Coordination **Motor**

Motor Execution

Hebb., The Organization of Behavior. Wiley & Sons, 1949

Robotic therapy, through intensive motor therapy, has been shown to induce primary motor cortex neuroplasticity in patients with stroke.

Treatment with dopaminergics, such as Levodopa, <u>enhances neuroplasticity by inducing</u> <u>LTP and LTD in networks responsible of memory</u> formation and learning.

Virtual reality (or enhanced biofeedback) can be coupled with robotic therapy to deliver rewards during training, thus <u>engaging structures which</u> weigh the magnitude of rewards, process abstract rewards, and manage motivation plus reinforcement.

EEG-informed associative assistance The Concept

Healthy

"The afferent signal generated artificially induces central nervous system plasticity because it is in causal association with the cortical activity associated with the intention to move"

Kinematics

Dynamics

Motor Planning

Motor Coordination Motor Execution

Mrachacz-Kersting et al. 2012 Xu et al. 2014

EEG information associated with the movement

A. Slow Cortical Potentials

Kinematics Dynamics Motor Planning

EEG information associated with the movement

A. Sensorimotor rhythms

EEG-informed associative assistance Implementation

EEG-informed BMI:

- Timed assistance
- Aimed to elicit associative facilitation

Dynamics Motor

Planning

Kinematics

Motor Coordination Motor Execution

J. Ibáñez et al., "Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials," J. Neural Eng., vol. 11, no. 5, p. 56009, 2014.

Outlook

Introduction

Motivation, constraints & interactions: hybrid systems The concept of associative (or causal) rehabilitation Clinical & Neurophysiological assessment

Clinical evidence :: Ongoing trials

	Bionic Leg	Ekso	HAL	Indego	Kinesis	ReWalk	WalkTrainer	WPAL	-
Exoskeleton									Kinematics
Degrees of freedom	K	HKA	НКА	HK	KA	НКА	HaHKA	НКА	
Weight-bearing devices	W	С	W/C/S	W/C	W/C	С	S	W/B	
Sensor measurements	JA, JT, FF	AJA, ACF, FF, Acc/Ori (arm)	EMG, JA, FF, Acc	JA, Acc, Ori	JA, FF, IT, Ori	JA, FF, Ori	IT, JA	JA, JT	Dynamics
Device weight (kg)	3.6	20	15	12	9.2	23	?	13	
User height (cm) limit	153-182	158-188	145-185	155-191	<1.85	160-190	?	145-180	
User weight (kg) limit	136	100	80	113	90	100	?	80	Motor
Gait initiation mode	Foot sensors and knee extension	1. Body tilt	Knee EMG activation	Body tilt	Button push	Body tilt	?	Button push	Planning
		2. Button push							
Unique features	Unilateral	_	_	—	Hybrid (FES)	_	Hybrid (FES), active bodyweight	Frame fits between legs,	Motor
							support suspension harness	easy to don within wheerchair	Coordinatio
							exoskeleton		Matan
ClinicalTrials.gov registra	a-	NCT01701388	_	NCT02202538	_	NCT02322125	CAUSKEICUII	_	IVIOTOr
tion ID									Execution
		NCT02324322				NCT01943669			Execution
		NCT02132702				NCT02118194			
		NCT02065830				NCT02104622			
						NCT01251549			
						NCT00627107			
						NC1014545/0			

Contreras et al., Powered exoskeletons for bipedal locomotion after spinal cord injury, J. Neural Engineering, 13 (2016) 031001.

Contreras et al., Powered exoskeletons for bipedal locomotion after spinal cord injury, J. Neural Engineering, 13 (2016) 031001.

BCI-based associative assistance Training and evaluation (Stroke)

Pre- and post-evaluation to quantify the patients's improvements (clinical scales, neurophysiological, biomechanics and acceptance).

Session: 3 x week; 4 consecutive weeks; Duration ~1

BCI-based associative assistance Training and evaluation (Stroke)

				Kinematics
Clinical Scores	Neurophysiological	Kinematics and kinetics	Satisfaction	Dynamics
Box & Block test	MEPs	Assisted and assisted movement	Questionnaire	Motor Planning
Modified Ashworth Scale (MAS) spasticity	EEG recording	Task performance		Motor
ARAT	Co-contraction index	Isometric force		Coordination Motor
Cognitive index				Execution

BCI-based associative assistance Experimental Protocol

• Pre-assessment (TMS), Post- and Post30- assessment (TMS)

TMS Assessment 5 x 12 single pulse Intensities: 90, 100, 110, 120, 130

Kinematics

Dynamics

Motor Planning

BCI-based associative assistance Experimental Protocol

Task: Reaching movements

Stimulated Muscles: Anterior deltoid & Triceps

Training phase: 2 x 20 mov. for BCI calibration Intervention phase: 50 good stimuli

- Intervention
- A. Training phase

- User performs 40 movements without stimulation, to train the user's motor intent detector

Kinematics

Dynamics

Motor Planning

BCI-based associative assistance Experimental Protocol

• Intervention

Task: Reaching movements Stimulated Muscles: Anterior deltoid & Triceps Training phase: 2 x 20 mov. for BCI calibration Intervention phase: 50 good stimuli

- B. Intervention phase
 - User performs 50 good movements

Kinematics

Dynamics

Motor Planning

EEG-informed associative assistance Partial Results (I)

Neurophysiology :: Effects in brain activity

Kinematics

Dynamics

Motor Planning

Motor Coordination Motor Execution

Bortole et al., J. Neural Engineering and Rehab,, 2015

Neurophysiology :: Effects in EEG vs. function

Kinematics Dynamics Motor Planning

Motor Coordination Motor Execution

Contreras-Vidal et al., submitted AJPMR, 2016

Neurophysiology :: Effects in brain activity

Kinematics

Dynamics

Motor Planning Motor Coordination

Motor Execution

Bortole et al., J. Neural Engineering and Rehab,, 2015

Motor coordination :: Synergy decomposition

* Evidence:

- Similar synergistic decomposition for similar functions accross subjects [Safavynia2011] [Clark2010]
- Mucle synergies can be modulated through intense rehabilitation therapy with robots [Salman2010]
- Pathological synergies can be modulated towards healthy patterns through robotic therapy [Salman2010]
- Robot training preserves motor modules in healthy volunteers [Moreno2013]

Safavynia and Ting, J. Neuophysiol, 2012 Clark et al., J. Neuophysiol, 2010 Salman et al., Int. Robots and Systems, 2010 Moreno et al., J. Neural Engineering and Rehab., 2013

Motor coordination :: Alterations in Neurological conditions

Altered modular control:

- Impulsive motor patterns are maintained after stroke.
- Modular control in stroke patients is kept but changed wrt healthy.
- Both modular control in affected and unaffected sides is altered.

Muscle activation is misdirected

Gizzi et al, J Neurophysiol 2011

Kinematics Dynamics

Motor Planning

Motor Coordination

> Motor Execution

Gizzi et al., J. Neuophysiol, 2011

Motor coordination :: Dimensionality

Moreno et al., Effects of robotic guidance on the coordination of locomotion, INER 2013, 10:79

ΓΛΙΛ

Motor coordination :: Preserved activation

Moreno et al., Effects of robotic guidance on the coordination of locomotion, INER 2013, 10:79

Motor coordination :: Preserved activation

- * Four motor modules were sufficient to describe the muscular activations across subjects & conditions
- * The main modular organization of control in in healthy humans is in general maintained when adding a GF with a robotic trainer.
 - * A low-dimensional, burst-like impulsive control, with activation impulses well timed with respect to the gait phases is in general maintained
 - * The results indicate that the muscle weightings can be shaped more flexibly than activation primitives by changing the GF.
 - * Conditions that are uncomfortable for healthy subjects (20% GF and 1.5 Km/h speed) result in deviations in modules and timing of activations.

Gonzalez et al., A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions, Frontiers in Comp. Neuroscience, 2015

Was :: Improving physical interaction

Take Home Message

- * Both CNS and PNS signals (e.g. EEG and EMG-informed muscle coordination) can be used to command WRs.
- * CNS and PNS signals can be used to trigger symbiotic co-control with WRs.
- * WRs will in general mediate, through physical interaction, changes in CNS and PNS structures as a result of neural plasticity. This is the basis for WRs in rehabilitation.
- * WRs may trigger pathological movement disorders such as spasticity, therefore control strategies should be adapted to the handicapped.
- * Neurological conditions may lead either to lack of sensory perception (complete SCI) or exacerbated sensations: attention has to be paid to how mechanical loading of limbs is performed.
- * Additional research efforts should be put in place to ascertain how the use of WRs neuromodulates CSN and PNS to improve the efficiency of therapeutic interventions.

Kinematics

Dynamics

Motor Planning

Motor Coordination

> Motor Execution

Thank you!

jose.pons@csic.es

 $H_2 R$ Integrative Approach for the Emergence of Human-like Locomotion

